
Triploid salmon: Current knowledge, new concepts and further developments

Dr. Herve Migaud Institute of Aquaculture, University of Stirling

sugar beets, blueberries, bananas, watermelon, and even wheat.

2.

3.

4.

UNIVERSITY OF STIRLING

- **1. Sexual maturation** TRIPLOID Why triploidy? **Early shock** How is it done? Retention of second polar body (3n) How triploid fish perform?
- 5. EC 7th Framework Program SALMOTRIP

UNIVERSITY OF STIRLING Why controlling maturation?

Production

- Arrest/Loss of growth
- Changes in flesh composition
- Changes in morphology
- Changes in colour/pigmentation
- Increased incidence of disease
- Death

Environment

• Escapees

Breeding companies

• Protection of IPR

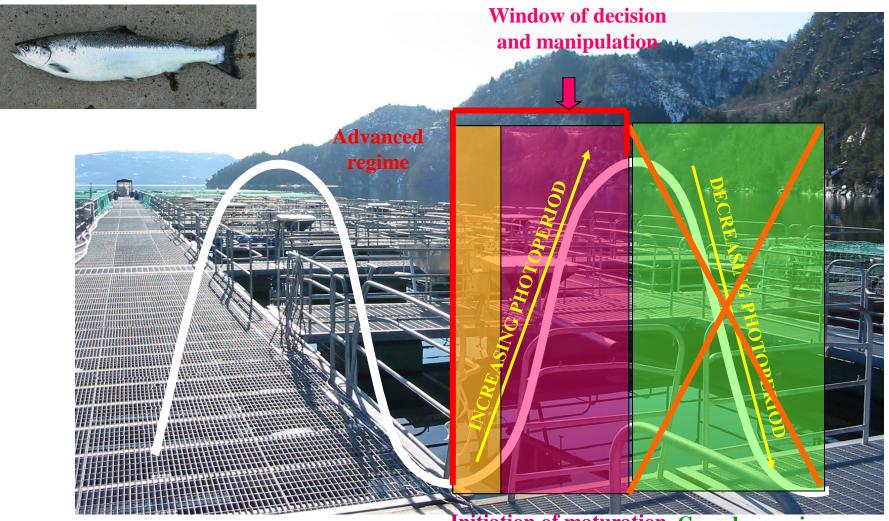
How sexual maturation can be controlled?

- Photoperiod manipulations
- Monosex Production
- Selection
- **Triploids = Sterile fish**

These management techniques are species specific

How sexual maturation can be controlled?

Photoperiod manipulations

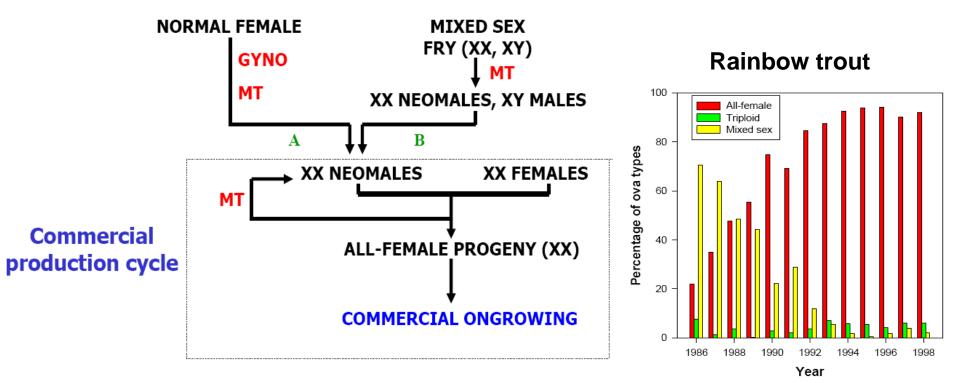

- Non invasive
- One/both sexe(s) mature prior to harvest
- Seasonal temperate species
- Used commercially routinely in salmon
- Not 100% and expensive

Photoperiodic inhibition of early maturation in salmon

Window shortened and thus reduced number of fish initiating maturation

Initiation of maturation Gonadogenesis

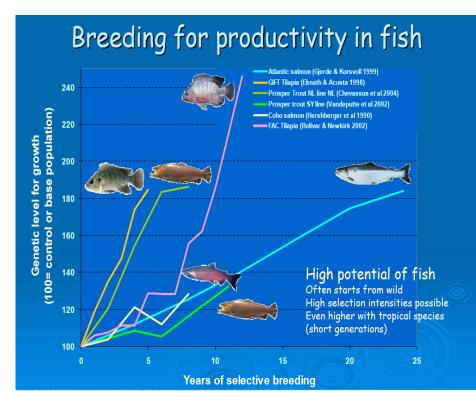
(decision)

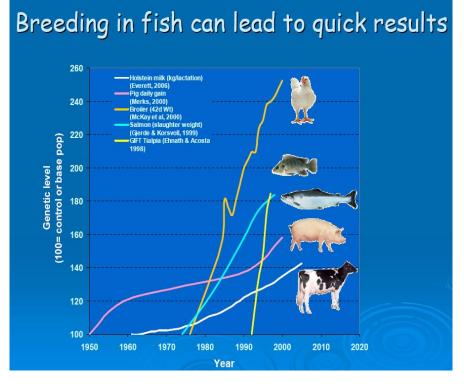

Migaud et al., 2005

How sexual maturation can be controlled?

Monosex Production

- One sex reaches harvest size before maturation
- Involves hormonal treatment (indirect, consumer/environmental concerns)
- Used commercially in trout for portion size production





How sexual maturation can be controlled?

Selection

- Long expensive process (yearly progress)
- Selection for late maturation possible but not for sterility

How sexual maturation can be controlled?

Triploid induction

- Not a new concept (tested in the 80-90s)
- Involves stripping and egg shocking (temperature or pressure)
- Both sexes mature prior to harvest
- Only female fully sterile (males can develop gonads)
- Used in the trout industry (90% of rainbow trout in France is triploid)

Polyploidy in aquaculture					
Species	Country	Application			
Atlantic salmon	Canada	B , P			
Rainbow trout	Canada, France, Japan	B , P			
Sea bass	(France)	i i 🖕			
Sea bream	-	- 🔰	1.100		
Atlantic cod	-	- 4			
Meagre	-	- 🖌	and the second		
Turbot	(Spain)	- I 🥻			
Halibut	(France)	- I 🚦			
Sole	-	- 💋			
Grass carp	USA	B, P*			
Nile tilapia	-	-			

Polyploidy applied in breeding programs (B), practical culture (P) or initial work (I). *In the USA. In China, still experimental

At present triploidy offers the only "commercially acceptable" means of sterility

Sterility would:

- Alleviate the negative impact that escapee fish present to the environment,
- Improve fish welfare and performances during on growing,
- Give a mean to protect domesticated stocks for salmon breeding companies
- Overall make the salmon industry more sustainable.

Data generated from this project will also aid legislative decision making regarding future aquaculture policies and the use of triploidy within the salmon industry.

Directive 90/220/CEE, April 1990

Increased public awareness of escapee potential impacts

			Fisheries and Oceans Pèches et Océans Canada Canada Canada						
Ī	LIVE LI BBC NEWS CHANNI		DFO Home Wh FAQs Fas	ntact Us at's New st Facts blications	Help About Us Site Map Facilities	Search Media Room Regions Career	Canada site	Health	
	Last Updated: Monday, 20 October, : E-mail this to a friend Farm threat to wild s	FISHERIES	AND OCE	ANS C	ANADA			ARCH FITNESS & NUTRITION MC	
	By Helen Briggs BBC News Online science reporter Repeated escapes of farmed endangered populations of w extinction, say scientists in t There has been concern over tl domesticated salmon are breed changing the genetic make-up ability to survive in the natural Until now, there has been little direct scientific evidence but, according to a report published in the journal Royal Society Proceedings B, the fears of environmentalists may be	Science Information By: A-Z Index Activity Audience Organization Science Stories Feature Articles Subscribe to our Feature Article mailing list Find Info on: Centres of Expertise Science Awards	Biotechnology to Help Protect Wild Salmon Stocks – The Triploid Approach Salmon farming is the largest sector in Canada's growing aquaculture industry. One of the challenges facing Atlantic salmon aquaculture development, however, has been preventing farmed fish from escaping into the wild. The worry on both the east and west coasts, is that the escaped salmon will interbreed with wild salmon, which could alter the genetic makeup of these stocks as well as their ecological interactions. One technique being looked at to address these concerns is the use of triploid salmon (see also 'Biotechnology to help Protect British Columbia's Wild Salmon Stocks – the All-Female Approach'), i.e., salmon with three set of chromosomes (the threads of DNA that carry genetic information) instead of the normal set of two. The extra set of chromosomes prevents development of viable eggs or sperm so, if the triploid fish escape, they can't reproduce. Triploid salmon are occasionally found in wild and cultured populations, and are relatively easy to mass produce.					d scientists dedicated to 1gh predictions of juicy 5 consisting entirely of 1ce that genetic disguised and cheerfully as we know them. ent appearance on their 1lmon that can be rendered embryonic, egg stage of th cial aquaculture industry of ficant threats to the dwindl the genes of domestic and	eir development. If an be persuaded to ling, stressed stocks
	justified. In a 10-year study, researchers from Ireland, Northern Island and Scotland, found that wild salmon were vulnerable to extinction becaus pressures from farmed fish. Experiments with wild and farme marine water showed that the c interbred had a much lower sun		What is the issue? One problem with t lower jaw defects, (diploid) relatives. T using triploid salmo DFO researchers a these undesirable t Because triploid sa salmon perform un mating behaviour o	triploid salm slower grow This has ten on. and their par traits, in ord almon may o der wild env	th and higher ided to discou thers are work ler to find way escape, scien ironmental co	mortality than th rage the aquacu king to discover s to fix or minim tists will also as nditions, e.g., do	neir normal liture industry from the cause(s) of ize them. sess how triploid	l Whoriskey, vice president tion, "in that taking the ge a cost-effective way would he salmon farming industr agic bullet sought by a com n once by false hopes. accelerating the viability ar reil of extinction slowly close	netic, reproductive I really protect wild ry." servation nd growth of fish-

Overall, farmed salmon were mu in the wild compared with nativ return to rivers to spawn.

fish died in the first few weeks

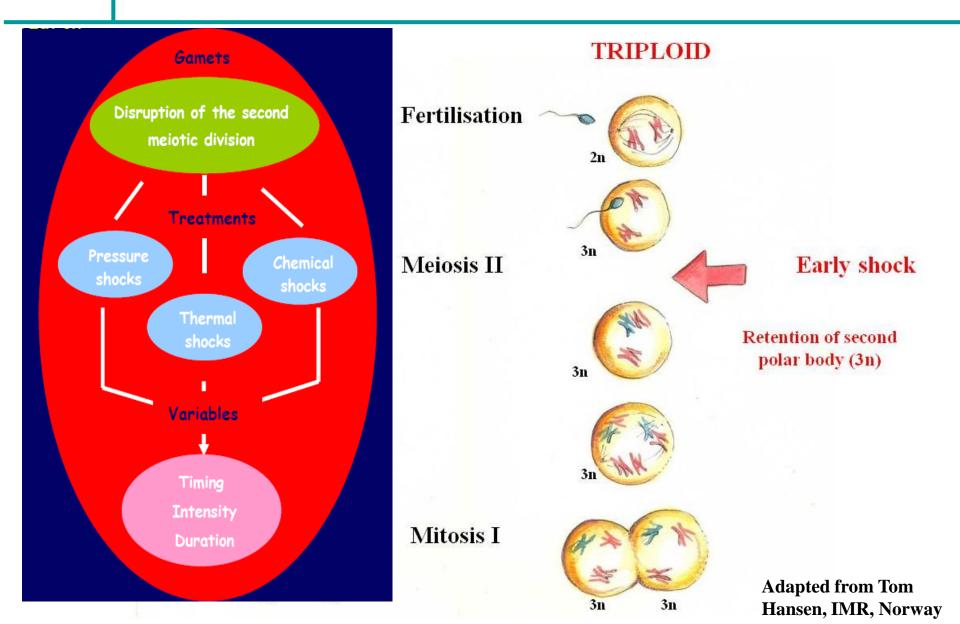
Researchers think that triploids have more defects because their nutritional requirements may be different than those of diploid salmon. They are, therefore, studying the total energy, protein, fat, mineral and vitamin profiles

The research plan

'eil of extinction slowly closing around wild

Farmed/wild salmon interactions

Only few studies done but strong evidence that farmed salmon can interact with wild stocks

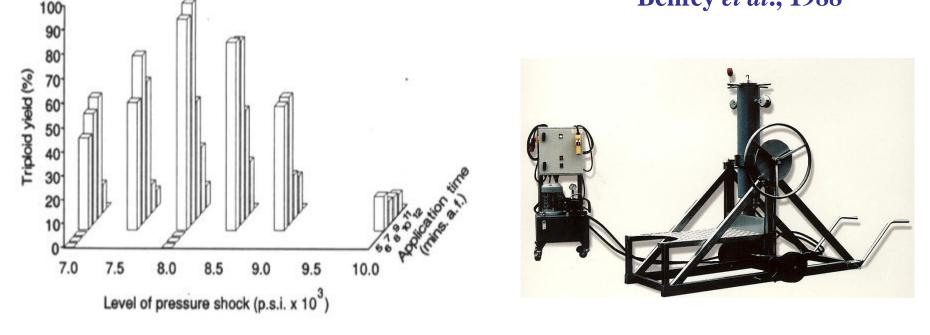

- Migration behaviour of 2n/3n salmon using microtagged fish released (Cotter et al., 2000, Ireland)
 - 2.25% of the mixed sex diploid (0.6 for triploid) returned to the river system where released as smolt and 7% to the coast (1.6 for triploids)
 - None released at cage site returned to the river system but 5 to 9% returned to the coast
- Return of farmed salmon escaped as juveniles in freshwater (Lacroix and Stokesbury, 2004, Canada)
 - Adult returns to the river system was 57% farmed fish escaped from sea cages, 34% wild fish and 9% farmed fish escaped as juveniles from the hatchery

Genetic assignment can identify farm of origin for salmon escapees (Glover et al, 2008, Norway)

- Genotyping (15 microsatellites loci) from 7 cage sites and 29 escapees
- 21 escapees from one site

UNIVERSITY OF **STIRLING How to produce triploid?**

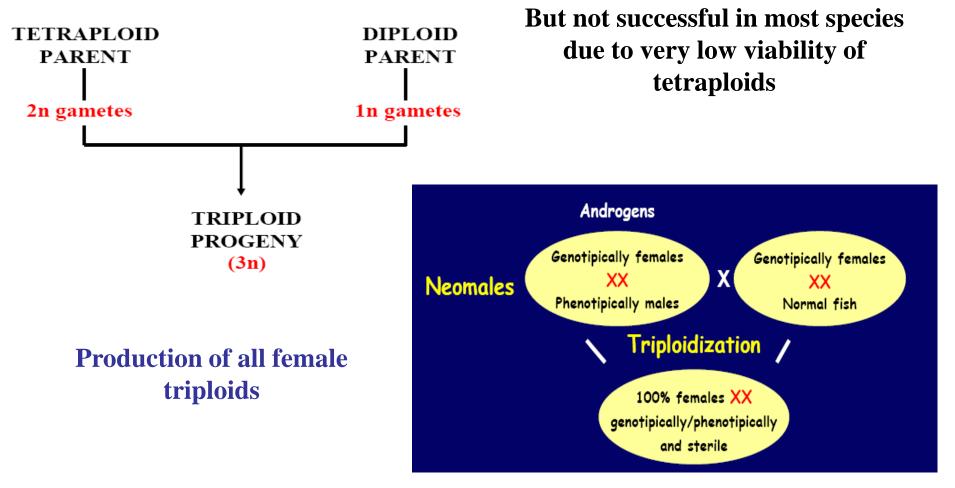
Three main variables (temperature dependent):


• Time of application after fertilisation (WHEN?) <u>at 10° C</u> 30 MPF (300°mins)

Pressure shock

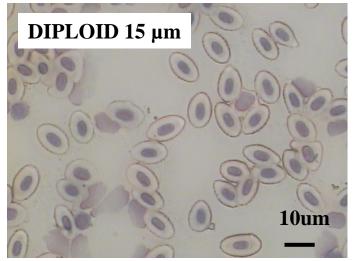
- Level of pressure (HOW MUCH?)
- Duration of the shock (FOR HOW LONG?)

- 9500 psi
 - 5 mins


Benfey et al., 1988

STIRLING How to produce triploid?

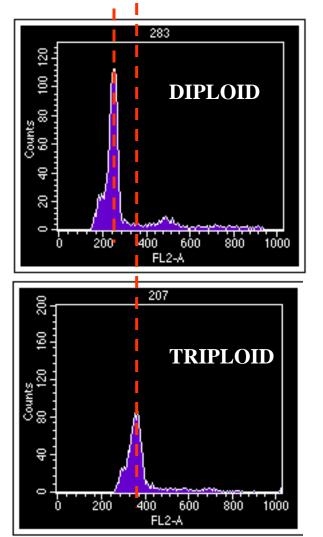
Triploids from tetraploid x diploid crosses



UNIVERSITY OF Triploid confirmation: Flow cytometry STIRLING

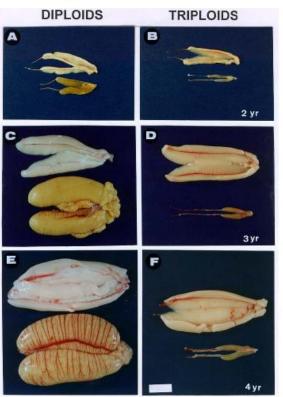
Measures the fluorescence of stained DNA

RBC SMEARS


FLOW CYTOMETRY

30 individuals per ploidy per family assessed

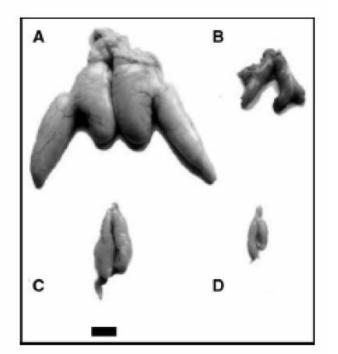
100% triploid rate in fish processed so far



Gonadal development

TRIPLOIDY EFFECTS

✓ Evaluate triploid performance in terms of reproduction



Felip et al. (2001)

Cal et al. (2006)

Degree and permanence of gonadal sterility in triploids

Five key areas of concern have been identified within the literature and industry reports:

- 1) Higher mortalities,
- 2) Tolerance of sub-optimal environments,
- 3) Morphological deformities,
- 4) Poorer growth performances and
- 5) Consumer and business-to-business market issues with respect to the communication and acceptance of new technologies.

- Triploidy previously associated with higher mortality
 - First-feeding
 - Seawater entry
- More recent studies (<1.5% Oppedal et al., 2003)
- Possible reasons:
- Cellular physiology
- Extreme environments
- Incomplete smoltification
- Inappropriate diets
- Stock specific deformities
- Communal rearing

UNIVERSITY OF STIRLING CONTINUES TO A CONTINUES CONTINUE

- Cells and tissues have lower surface area: volume ratio
 - Active transport of ions?
 - Blood oxygen capacity?
 - Hormonal signalling?
 - Immune function?

Potential Gill Deformity

- Osmoregulation?
- Gas exchange?


• Minimum size for successful smoltification?

- Correlation Size vs. SW survival

• Metabolic Physiology 2n = 3n

- problems at extreme environmental range

RBC

Shortened gill filaments

Slower Exercise Recovery

Hyndman et al., 2003

- No reduction muscle Phosphocreatine (PCr) in 3n
- = anaerobic pathway problems
- = temperature limiting biosynthesis
- Slower muscle ATP recovery in 3n High temp = rate limiting Lower O2 consumption = rate limiting

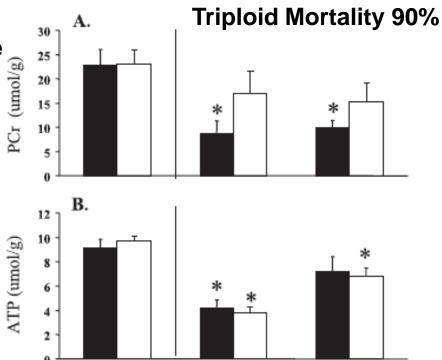


Fig. 3. White muscle PCr(A), ATP (B) and glycogen (C) of diploid (black bars) and trip bid (open bars) brook trout before and after 5 min of exhaustive exercise (dashed line). (N=8 for triploids at all times, whereas N=9 for diploid controls, N=7 for diploid 0 h and N=5 for diploid 2 h.) An asterisk (*) denotes a significant difference from the control and the plus sign (+) denotes a significant difference between ploidies within the time interval; p < 0.05.

Anaerobic capacity of triploids maybe lower but results not conclusive Effect not apparent with "normal" environmental range (9°C = no mortality) Lower metabolic rate at higher temp (Atkins & Benfey 2008)

Osmotic stress

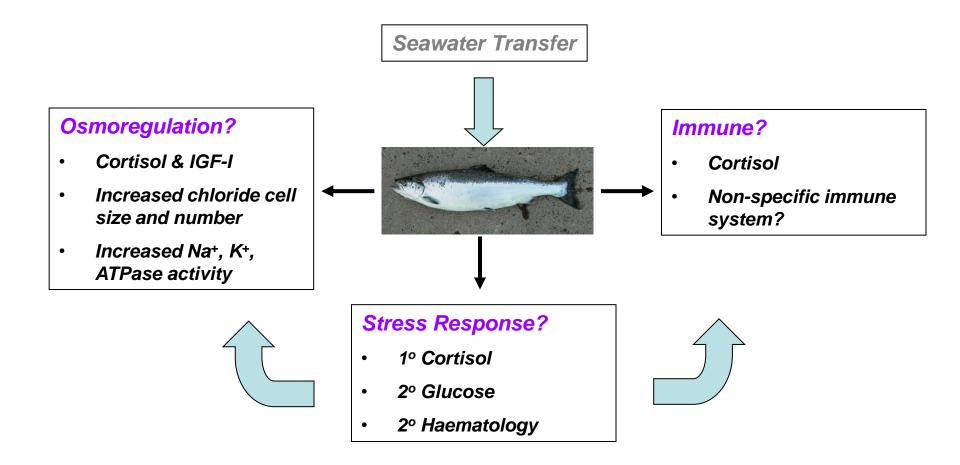
Freshwater (<5 mOsm kg⁻¹)

- Osmotic influx
- Ionic efflux
- No drinking
- Dilute urine
- Active uptake of ions

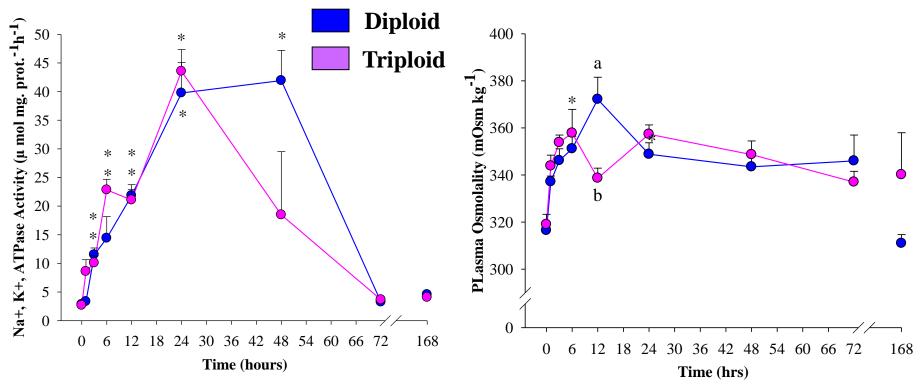
Seawater (~1000 mOsm kg⁻¹)

- Osmotic efflux
- Ionic influx
- Copious Drinking
- Concentrated urine
- Active extrusion of ions

Internal Fluids (~300-400 mOsm kg⁻¹)


- Must be maintained
- Ionic/osmotic balance
- Acid/base balance
- Normal cellular function

UNIVERSITY OF


STIRLING

Seawater Adaptation – Acute Responses

Smoltification: ATPase Function

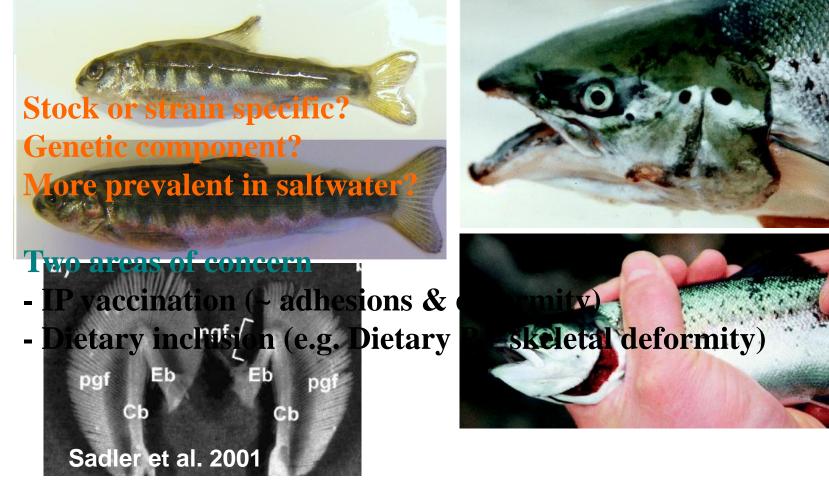
190g rainbow trout 3n / 2n = 95-98 % SW survival

100g rainbow trout 3n = 0% 2n = 90 % SW survival

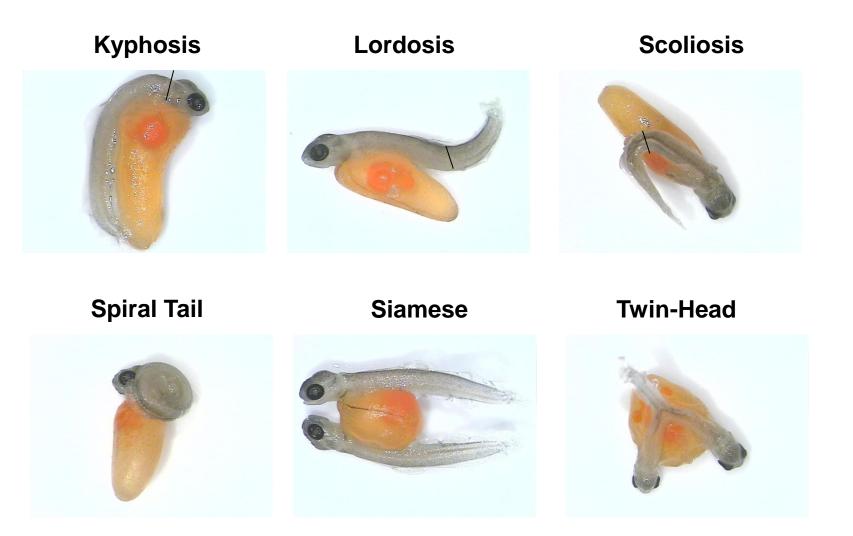
Clear importance of size for SW Tolerance ~ cellular function & ion transport

Taylor et al., 2007

STIRLING Triploid concerns

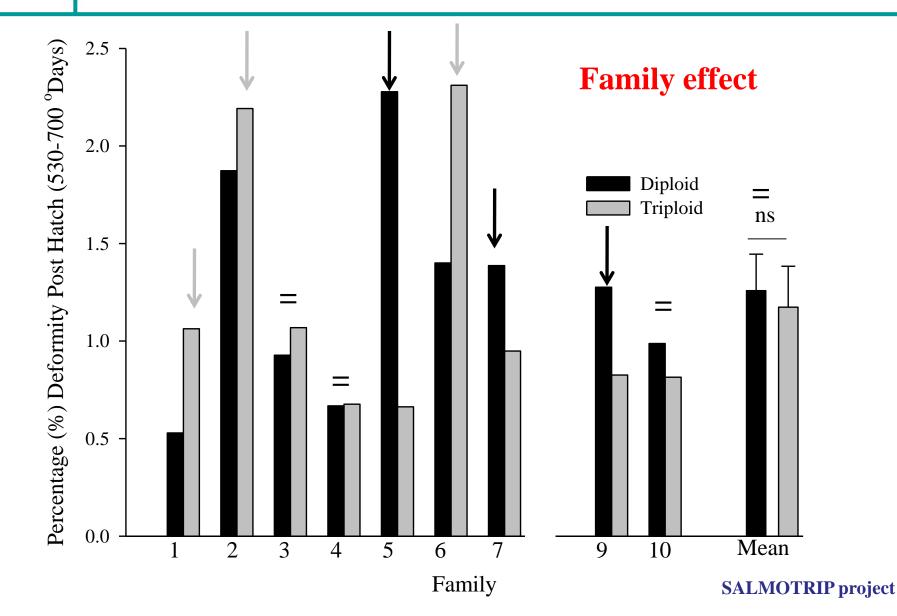

Five key areas of concern have been identified within the literature and industry reports:

- 1) Higher mortalities,
- 2) Tolerance of sub-optimal environments,
- 3) Morphological deformities,
- 4) Poorer growth performances and
- 5) Consumer and business-to-business market issues with respect to the communication and acceptance of new technologies.



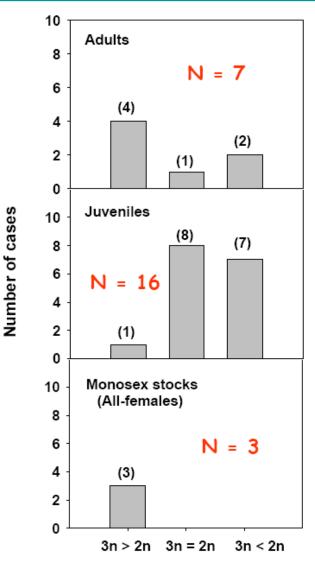
UNIVERSITY OF STIRLING Morphological deformities

- Numerous deformities reported
- Lower Jaw, Cataract, Short Operculum, Compressed Spine, Reduced no. Gill Filaments


Typical Deformities Observed pre-first feeding

NB: All deformities non-cranial pre-first feeding All deformities are lethal

Percentage Deformity Post-Hatch within morts (Pre-1st Feeding)


STIRLING Triploid concerns

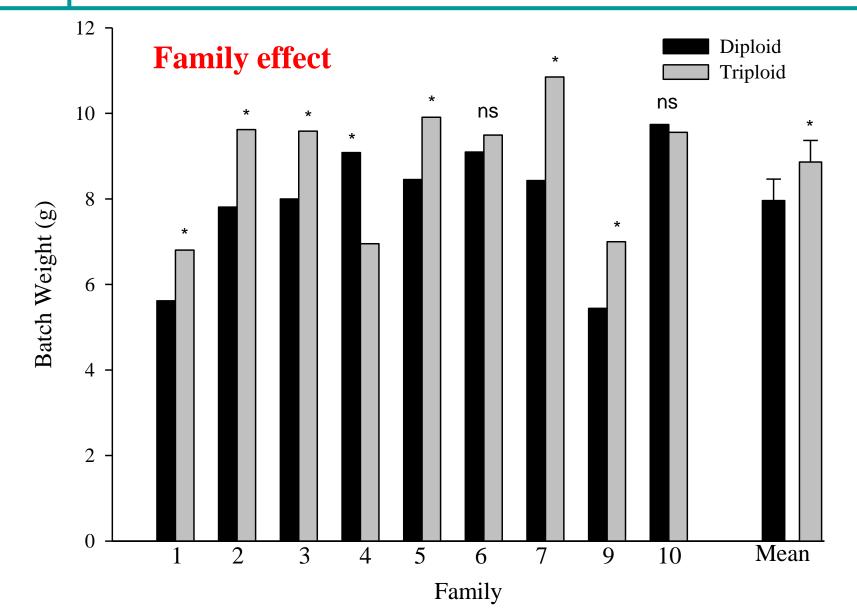
Five key areas of concern have been identified within the literature and industry reports:

- 1) Higher mortalities,
- 2) Tolerance of sub-optimal environments,
- 3) Morphological deformities,
- 4) Poorer growth performances and
- 5) Consumer and business-to-business market issues with respect to the communication and acceptance of new technologies.

Growth performances

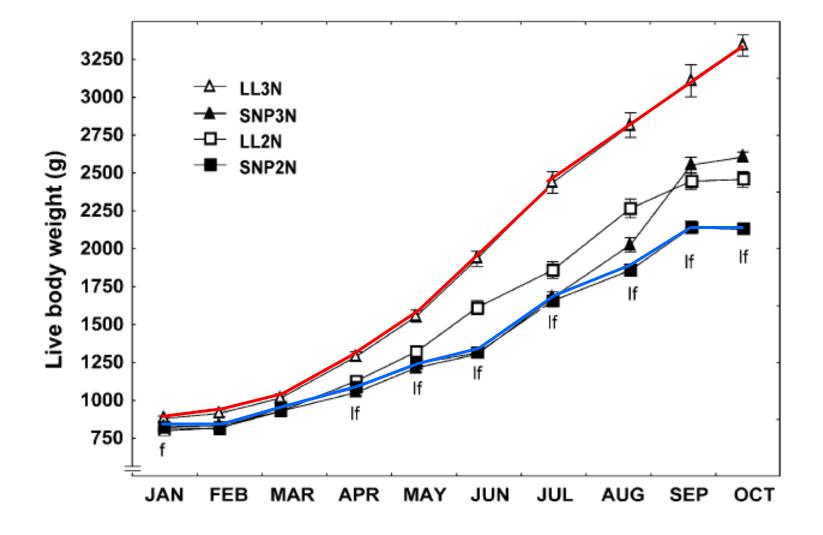
Performance of triploids is species specific

Species	Growth	Reference		
Ictalurus punctatus	+	Wolters <i>et al.</i> (1982)		
•		· · ·		
Oreochromis niloticus	+	Bramick <i>et al.</i> (1995)		
Heteropneustes fossilis	+	Tiwary <i>et al</i> . (1997)		
Oreochromis aureus	+	Valenti (1976)		
Silurus glanis	+	Krasznai & Marian (1986)		
Oncorhynchus mykiss	-	Solar <i>et al.</i> (1984)		
Lepomis gibbosus	-	Kerby et al. (1995)		
Oncorhynchus kisutch	-	Withler <i>et al.</i> (1995)		
Salmo salar	-	Galbreath et al. (1995)		
Misgurnus mizolepis	NC	Kim <i>et al.</i> (1994)		
Salmo salar	NC	McGeachy <i>et al.</i> (1995)		
Oreochromis niloticus	NC	Hussain <i>et al.</i> (1995)		
Oreochromis aureus	NC	Chang <i>et al.</i> (1993)		


(+) positive, (-) negative, (NC) no change

Basant et al. (2004)

Felip (2000)



Parental Contribution to Growth

Growth performances

Oppedal, Taranger and Hansen, 2003

Can triploid salmon be marketed? What price?

- 1. Triploid is not a GMO
- 2. Sensory analyses/flesh quality studies did not reveal any differences between 2n/3n
- **3.** Triploid oyster are already on the market (sold as "sterile" or "Four seasons oysters", rainbow trout (80% of the French production), brown trout for restocking and salmon already in Canada.
- 4. Certification for organic triploid already in place in France
- 5. Country specific?
- 6. Need for consumer / market perception studies in the EU prior to any implementation

"You Never Forget Your First Time" Photo Contest Join us in a visual celebration of first impressions. Send us a photo and you could WIN fabulous prizes!

Confusion between triploid and GMO

SALMOTRIP

FEASIBILITY STUDY OF TRIPLOID ATLANTIC SALMON PRODUCTION 2008 - 2010

LEAD CO-ORDINATOR Dr Herve Migaud, Dr. John Taylor

<u>RTD Partner</u>: IMR, Tom Hansen, Norway

WUR, Dr Adriaan Kole, Netherlands

SME Partner: UK, Ireland and Norway

DELIVERABLES: (experimental)

- Transfer of triploid induction technology to SMEs
- Strengthen knowledge on triploid biological and culture requirements
- Advance knowledge of the smolt process and monitoring
- Provision of triploid specific smoltification regimes
- Develop a welfare scheme for triploid fish
- Define parentage contribution to performance based on ploidy
- Identify perceived risk-benefit of triploidy and define marketing strategy

Key questions addressed by SALMOTRIP

Salmotrip focuses on four key areas of innovation:Smoltification

Are there specific requirements of triploid fish to successfully undergo smoltification? Can out of season S0 triploid be produced?

Triploid Welfare

UNIVERSITY OF

STIRLING

What is the sensitivity of triploid fish to suboptimal environmental conditions throughout the production cycle? <u>Overall, in which conditions triploid fish</u> <u>should not be produced commercially?</u>

Selection Programs

What is the family effect on triploid performance? i.e. **is there a need to select fish for triploidisation?**

Market Perception

How is triploid salmon production perceived within Europe and how can market acceptance be optimised? i.e. how to potentially market such a fish as <u>compared to diploids?</u>

• Triploid is not a GMO

Confusion between <u>genetic modification /</u> genetic <u>manipulation (</u>can be found in wild stocks)

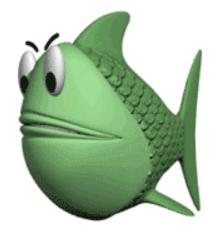
• Triploid is the only available "commercially acceptable" means of sterility

Can help to address the environmental impact of escapees, detrimental effects of maturation on flesh quality, to protect IPR for breeding companies and overall maintain a <u>sustainable and eco-friendly industry</u>

- Triploidy is already commercially used Fruit/vegetable, oyster, trout
- Triploids can perform as well as diploids

When reared in optimal conditions from good quality eggs and selected stocks

• Further research is needed



A number of partners from the EU salmon industry

THANK YOU

